We investigate the structure of two-dimensional partial cubes, i.e., of isometric subgraphs of hypercubes whose vertex set defines a set family of VC-dimension at most 2. Equivalently, those are the partial cubes which are not contractible to the 3-cube $Q_3$ (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). We show that our graphs can be obtained from two types of combinatorial cells (gated cycles and gated full subdivisions of complete graphs) via amalgams. The cell structure of two-dimensional partial cubes enables us to establish a variety of results. In particular, we prove that all partial cubes of VC-dimension 2 can be extended to ample aka lopsided partial cubes of VC-dimension 2, yielding that the set families defined by such graphs satisfy the sample compression conjecture by Littlestone and Warmuth (1986). Furthermore we point out relations to tope graphs of COMs of low rank and region graphs of pseudoline arrangements.
翻译:我们调查了二维部分立方体的结构,即超立方体的等离子子子谱结构,其顶部设置最多能定义一组VC-dimenment 。 等量地,这些是部分立方体,不能与3立方体合合3美元( 这里的收缩意味着将与超立方体的同一坐标相对应的边缘捆绑在一起)。 我们显示, 我们的图形可以通过汞合体从两种类型的组合细胞( 熔化周期和完整图形的门形全子) 获得。 两维部分立方体的细胞结构使我们能够建立各种结果。 特别是, 我们证明VC- dimension 2 的所有部分立方体都可以扩展至足够的aka片片部分立方体, 使这些图形所定义的组合能够满足Litstone 和 Warmuth (1986) 的样本压缩组合。 此外,我们还指出了与低级和伪线安排区域图形的COM图之间的关系。