Low Earth Orbit (LEO) satellite networks are increasingly essential for space-based artificial intelligence (AI) applications. However, as commercial use expands, LEO satellite networks face heightened cyberattack risks, especially through satellite-to-satellite communication links, which are more vulnerable than ground-based connections. As the number of operational satellites continues to grow, addressing these security challenges becomes increasingly critical. Traditional approaches, which focus on sending models to ground stations for validation, often overlook the limited communication windows available to LEO satellites, leaving critical security risks unaddressed. To tackle these challenges, we propose a sharded blockchain-based federated learning framework for LEO networks, called SBFL-LEO. This framework improves the reliability of inter-satellite communications using blockchain technology and assigns specific roles to each satellite. Miner satellites leverage cosine similarity (CS) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to identify malicious models and monitor each other to detect inaccurate aggregated models. Security analysis and experimental results demonstrate that our approach outperforms baseline methods in both model accuracy and energy efficiency, significantly enhancing system robustness against attacks.
翻译:暂无翻译