Mesh reconstruction from a 3D point cloud is an important topic in the fields of computer graphic, computer vision, and multimedia analysis. In this paper, we propose a voxel structure-based mesh reconstruction framework. It provides the intrinsic metric to improve the accuracy of local region detection. Based on the detected local regions, an initial reconstructed mesh can be obtained. With the mesh optimization in our framework, the initial reconstructed mesh is optimized into an isotropic one with the important geometric features such as external and internal edges. The experimental results indicate that our framework shows great advantages over peer ones in terms of mesh quality, geometric feature keeping, and processing speed.


翻译:3D点云的网目重建是计算机图形、计算机视觉和多媒体分析领域的一个重要主题。 在本文中,我们提出了一个基于 voxel 结构的网目重建框架。 它提供了提高本地区域探测准确性的内在测量标准。 根据所探测到的本地区域, 可以获得一个初始重建的网目。 在我们框架内的网目优化后, 初始重建后的网目将优化为具有外部和内部边缘等重要几何特征的异形网目。 实验结果显示, 我们的框架在网目质量、 几何特征保持和处理速度方面比同行框架有巨大的优势 。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【北京大学】CVPR 2020 | PQ-NET:序列化的三维形状生成网络
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关VIP内容
【北京大学】CVPR 2020 | PQ-NET:序列化的三维形状生成网络
相关资讯
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员