Federated learning (FL) is a distributed machine learning paradigm that selects a subset of clients to participate in training to reduce communication burdens. However, partial client participation in FL causes \emph{objective inconsistency}, which can hinder the convergence, while this objective inconsistency has not been analyzed in existing studies on sampling methods. To tackle this issue, we propose an improved analysis method that focuses on the convergence behavior of the practical participated client's objective. Moreover, based on our convergence analysis, we give a novel unbiased sampling strategy, i.e., FedSRC-D, whose sampling probability is proportional to the client's gradient diversity and local variance. FedSRC-D is provable the optimal unbiased sampling in non-convex settings for non-IID FL with respect to the given bounds. Specifically, FedSRC-D achieves $\mathop{O}(\frac{G^2}{\epsilon^2}+\frac{1}{\epsilon^{2/3}})$ higher than SOTA convergence rate of FedAvg, and $\mathop{O}(\frac{G^2}{\epsilon^2})$ higher than other unbiased sampling methods. We corroborate our results with experiments on both synthetic and real data sets.
翻译:联邦学习(FL)是一种分布式的机器学习模式,它选择了一部分客户参加培训以减少通信负担。然而,部分客户参加FL会导致/emph{客观不一致},这可能会妨碍趋同,尽管在抽样方法的现有研究中并未分析这种客观不一致性。为了解决这一问题,我们建议采用一种改进的分析方法,侧重于实际参与客户目标的趋同行为。此外,根据我们的趋同分析,我们给出了一种新的不偏不倚的抽样战略,即FedSRC-D,其取样概率与客户的梯度多样性和当地差异成正比。FedSRC-D在非集装箱环境中对非IIDFL进行最佳的无偏向抽样,具体地说,FedSRC-D实现了$\mathop{O}(frac}G2-Tepsilon%2 ⁇ frac{1unsilon2}1\unsilon ⁇ 2/3 ⁇ )美元高于SOTAFedAvg的趋同率率和$\matpho{O}(fraxxxximalalal sluslusalal salbalbrogysteal)结果。