We consider the problem of communicating over a classical-quantum (CQ) multiple access channel with random classical states non-causally available at the transmitter, referred to as a QMSTx. QMSTx is a classical-quantum multiple access analogue of the channel considered by Gelfand and Pinsker in 1980. We undertake a Shannon-theoretic study and focus on the problem of characterizing inner bounds to the capacity region of a QMSTx. We propose a new coding scheme based on \textit{union coset codes} - codes possessing algebraic properties and derive a new inner bound that subsumes the inner based on IID random coding. We identify examples for which the derived inner bound is strictly larger.
翻译:我们考虑了在古典-分子(CQ)多入口通道上进行交流的问题,在发射机上可随意使用非因果的古典国家,称为QMSTx。QMSTx是1980年Gelfand和Pinsker所考虑的频道的古典-量性多入口类比。我们进行了香农理论研究,重点研究QMSTx能力区域内部界限的定性问题。我们提出了一个基于\ textit{union cosecet} - 含有代数特性的编码的新编码方案,并产生了一个新的内框,根据IID随机编码将内嵌入内层。我们找出了衍生的内圈严格较大的例子。