This paper presents an approach for approximating the reachable space of robotic manipulators based on convex polytopes. The proposed approach predicts the reachable space over a given time horizon based on the robot's actuation limits and kinematic constraints. The approach is furthermore extended to integrate the robot's environment, assuming it can be expressed in a form of linear constraints, and to account for the robot's link geometry.The accuracy of the proposed method is evaluated using simulations of robot's nonlinear dynamics and it is compared against the cartesian space limits, usually provided by manufacturers in standard datasheets.The accuracy analysis results show that the proposed method has good performance for the time horizons up to 250ms, encapsulating most of the simulated robot's reachable space while maintaining comparable volume. For a 7 dof robot, the method has an average execution time of 50ms, independent of the horizon time, potentially enabling real-time applications.
翻译:本文介绍了一种基于 convex 多元托盘的机器人操控器近似可达空间的方法。 所拟议的方法根据机器人的激活限值和运动限制,预测了特定时间范围内的可达空间。 进一步扩展了这一方法以整合机器人的环境, 假设它可以以线性约束的形式表达, 并计算机器人的链接几何。 所提议方法的准确性是通过模拟机器人的非线性动态来评估的, 并与通常由标准数据表制造商提供的cartesian空间限值进行比较。 准确性分析结果表明, 所提议方法在高达250米的时间限值上具有良好的性能, 将大多数模拟机器人的可达空间封装在保持类似体积的同时。 对于7 dof 机器人来说, 该方法的平均执行时间为50米, 独立于地平线时间, 可能允许实时应用。