Rotation equivariance is a desirable property in many practical applications such as motion forecasting and 3D perception, where it can offer benefits like sample efficiency, better generalization, and robustness to input perturbations. Vector Neurons (VN) is a recently developed framework offering a simple yet effective approach for deriving rotation-equivariant analogs of standard machine learning operations by extending one-dimensional scalar neurons to three-dimensional "vector neurons." We introduce a novel "VN-Transformer" architecture to address several shortcomings of the current VN models. Our contributions are: $(i)$ we derive a rotation-equivariant attention mechanism which eliminates the need for the heavy feature preprocessing required by the original Vector Neurons models; $(ii)$ we extend the VN framework to support non-spatial attributes, expanding the applicability of these models to real-world datasets; $(iii)$ we derive a rotation-equivariant mechanism for multi-scale reduction of point-cloud resolution, greatly speeding up inference and training; $(iv)$ we show that small tradeoffs in equivariance ($\epsilon$-approximate equivariance) can be used to obtain large improvements in numerical stability and training robustness on accelerated hardware, and we bound the propagation of equivariance violations in our models. Finally, we apply our VN-Transformer to 3D shape classification and motion forecasting with compelling results.
翻译:在运动预测和3D感知等许多实际应用中,轮廓均匀是一种可取的属性,例如运动预测和3D感知,它可以提供样样效率、更好的一般化和对输入扰动的稳健度等好处。矢量中子(VN)是一个最近开发的框架,它提供了一种简单而有效的方法,通过将一维变形神经元扩大至三维“矢量神经元”来得出标准机学习操作的旋转-静态类比。 我们引入了一个新型的“VN-变形”结构,以解决当前VN模型的若干缺陷。 我们的贡献是: $(i) 我们得到一个旋转-偏差关注机制,它消除了原矢量中神经模型所要求的重特性预处理的需要; $(ii) 我们扩展了VN框架,以支持非空间属性,将这些模型的适用范围扩大到现实世界数据集; $(iii) 我们获得一个旋转-Q-Q-Q-Q-递增度机制,大大加快了振荡度和训练速度; 美元(iv)我们使用的大幅贸易稳定-升级-升级-升级-我们使用的硬度-升级-升级-我们使用的硬性)在稳定中,我们使用的硬度模型中,我们使用了。