项目名称: 不完整人体运动捕获数据中的姿态与行为识别技术研究

项目编号: No.61202298

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 计算机科学学科

项目作者: 彭淑娟

作者单位: 华侨大学

项目金额: 24万元

中文摘要: 本项目以解决不完整人体运动捕获数据中姿态与行为识别问题为目标,研究基于不完整人体运动数据恢复重构方法和运动姿态相似度估计理论,建立基于人类视觉和机器识别的人体姿态与行为识别算法。在深入理论研究的基础上,本项目拟从两方面解决不完整运动捕获数据中人体姿态与行为识别问题: 一方面从不完整人体运动数据中恢复重构完整运动捕获数据,用于基于人类视觉特征的运动姿态与行为识别。另一方面,直接从不完整运动捕获数据中提取判别性特征和估算人体姿态相似度,用于基于计算机的自动运动姿态与行为识别。 本项目着重研究以下四方面内容:1)紧致稀疏的人体运动序列表达方式;2)不完整运动捕获数据恢复重构方法;3)全局与局部运动特征相结合的最优化理论和方法; 4)完整与不完整人体运动捕获数据在不同维度空间的对应关系。

中文关键词: 不完整运动捕获数据;运动过渡;缺失数据重构;运动捕获数据去噪;运动检索与识别

英文摘要: This project addresses the problem of posture and behavior recognition from the incomplete human motion capture data, in which the data reconstruction algorithms and similarity estimation theories of motion posture within the incomplete human motion data are included. Accordingly, the corresponding algorithms within the human visual and machine learning can be established. In this project, we shall solve the posture and behavior recognition problem in two ways: on the one hand, we attempt to complete reconstruction of full motion capture data through incomplete data, and recognize the human posture and behavior via the human visual characteristics accordingly. On the other hand, we shall extract the discriminative features from the incomplete motion capture data directly and subsequently estimate posture similarity to automatically recognize the corresponding posture and behavior, respectively. The project will mainly focus on the following four aspects: 1) Study the sparse representation of the posture and behavior motion data; 2) Develop a reconstruction method for incomplete human motion capture data; 3) Analyse the optimization theories to combine the global and local motion features; 4) Investigate the relationships between complete and incomplete human motion capture data within different dimensional sp

英文关键词: incomplete MoCap data;motion transition;missing values reconstruction;MoCap data denoising;motion retrieval and recognition

成为VIP会员查看完整内容
2

相关内容

基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
28+阅读 · 2021年11月8日
专知会员服务
15+阅读 · 2021年5月13日
你跳宅舞的样子很专业:不,这都是AI合成的结果
【紫冬声音】基于人体骨架的行为识别
中国自动化学会
16+阅读 · 2019年1月30日
基于姿态的人物视频生成【附PPT与视频资料】
人工智能前沿讲习班
32+阅读 · 2019年1月28日
基于人体骨架的行为识别【附PPT与视频资料】
人工智能前沿讲习班
31+阅读 · 2019年1月15日
视觉SLAM技术综述
计算机视觉life
25+阅读 · 2019年1月4日
干货|基于双流递归神经网络的人体骨架行为识别!
全球人工智能
13+阅读 · 2017年12月15日
视频行为识别年度进展
深度学习大讲堂
34+阅读 · 2017年6月12日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月20日
小贴士
相关资讯
你跳宅舞的样子很专业:不,这都是AI合成的结果
【紫冬声音】基于人体骨架的行为识别
中国自动化学会
16+阅读 · 2019年1月30日
基于姿态的人物视频生成【附PPT与视频资料】
人工智能前沿讲习班
32+阅读 · 2019年1月28日
基于人体骨架的行为识别【附PPT与视频资料】
人工智能前沿讲习班
31+阅读 · 2019年1月15日
视觉SLAM技术综述
计算机视觉life
25+阅读 · 2019年1月4日
干货|基于双流递归神经网络的人体骨架行为识别!
全球人工智能
13+阅读 · 2017年12月15日
视频行为识别年度进展
深度学习大讲堂
34+阅读 · 2017年6月12日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员