We study actively labeling streaming data, where an active learner is faced with a stream of data points and must carefully choose which of these points to label via an expensive experiment. Such problems frequently arise in applications such as healthcare and astronomy. We first study a setting when the data's inputs belong to one of $K$ discrete distributions and formalize this problem via a loss that captures the labeling cost and the prediction error. When the labeling cost is $B$, our algorithm, which chooses to label a point if the uncertainty is larger than a time and cost dependent threshold, achieves a worst-case upper bound of $O(B^{\frac{1}{3}} K^{\frac{1}{3}} T^{\frac{2}{3}})$ on the loss after $T$ rounds. We also provide a more nuanced upper bound which demonstrates that the algorithm can adapt to the arrival pattern, and achieves better performance when the arrival pattern is more favorable. We complement both upper bounds with matching lower bounds. We next study this problem when the inputs belong to a continuous domain and the output of the experiment is a smooth function with bounded RKHS norm. After $T$ rounds in $d$ dimensions, we show that the loss is bounded by $O(B^{\frac{1}{d+3}} T^{\frac{d+2}{d+3}})$ in an RKHS with a squared exponential kernel and by $O(B^{\frac{1}{2d+3}} T^{\frac{2d+2}{2d+3}})$ in an RKHS with a Mat\'ern kernel. Our empirical evaluation demonstrates that our method outperforms other baselines in several synthetic experiments and two real experiments in medicine and astronomy.


翻译:我们研究主动标注流数据的问题,其中一个主动学习程序面对一系列数据点,必须通过昂贵的实验选择要标记的数据点。这样的问题经常出现在医疗保健和天文学等应用中。我们首先研究数据的输入属于 $K$ 个离散分布之一的情况,并通过损失函数来形式化这个问题,该函数捕捉标记成本和预测误差。当标记成本为 $B$ 时,我们的算法会在不确定度大于时间和成本相关阈值时选择标记点,经过 $T$ 轮后,该算法能够实现 $O(B^{\frac{1}{3}} K^{\frac{1}{3}} T^{\frac{2}{3}})$ 的损失最坏上限。我们还提供了更精细的上限,证明该算法能够适应到达模式,并在到达模式更有利时实现更好的性能。我们利用匹配的下限来补充这两个上限。接下来,当输入属于连续域,实验的输出是具有有界 RKHS 范数的光滑函数时,我们研究该问题。在 $d$ 维度下的 $T$ 轮后,我们证明损失在具有平方指数核的 RKHS 中被界定为 $O(B^{\frac{1}{d+3}} T^{\frac{d+2}{d+3}})$,在具有 Mat\'ern 核的 RKHS 中为 $O(B^{\frac{1}{2d+3}} T^{\frac{2d+2}{2d+3}})$。我们的实证评估表明,在数个合成实验和两个医学和天文学实验中,我们的方法优于其他基线方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS 2019 Apple成果汇总】《Apple at NeurIPS 2019》
专知会员服务
10+阅读 · 2019年12月6日
论文浅尝 | Language Models (Mostly) Know What They Know
开放知识图谱
0+阅读 · 2022年11月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
12+阅读 · 2022年4月12日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS 2019 Apple成果汇总】《Apple at NeurIPS 2019》
专知会员服务
10+阅读 · 2019年12月6日
相关资讯
论文浅尝 | Language Models (Mostly) Know What They Know
开放知识图谱
0+阅读 · 2022年11月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员