We study actively labeling streaming data, where an active learner is faced with a stream of data points and must carefully choose which of these points to label via an expensive experiment. Such problems frequently arise in applications such as healthcare and astronomy. We first study a setting when the data's inputs belong to one of $K$ discrete distributions and formalize this problem via a loss that captures the labeling cost and the prediction error. When the labeling cost is $B$, our algorithm, which chooses to label a point if the uncertainty is larger than a time and cost dependent threshold, achieves a worst-case upper bound of $O(B^{\frac{1}{3}} K^{\frac{1}{3}} T^{\frac{2}{3}})$ on the loss after $T$ rounds. We also provide a more nuanced upper bound which demonstrates that the algorithm can adapt to the arrival pattern, and achieves better performance when the arrival pattern is more favorable. We complement both upper bounds with matching lower bounds. We next study this problem when the inputs belong to a continuous domain and the output of the experiment is a smooth function with bounded RKHS norm. After $T$ rounds in $d$ dimensions, we show that the loss is bounded by $O(B^{\frac{1}{d+3}} T^{\frac{d+2}{d+3}})$ in an RKHS with a squared exponential kernel and by $O(B^{\frac{1}{2d+3}} T^{\frac{2d+2}{2d+3}})$ in an RKHS with a Mat\'ern kernel. Our empirical evaluation demonstrates that our method outperforms other baselines in several synthetic experiments and two real experiments in medicine and astronomy.
翻译:我们研究主动标注流数据的问题,其中一个主动学习程序面对一系列数据点,必须通过昂贵的实验选择要标记的数据点。这样的问题经常出现在医疗保健和天文学等应用中。我们首先研究数据的输入属于 $K$ 个离散分布之一的情况,并通过损失函数来形式化这个问题,该函数捕捉标记成本和预测误差。当标记成本为 $B$ 时,我们的算法会在不确定度大于时间和成本相关阈值时选择标记点,经过 $T$ 轮后,该算法能够实现 $O(B^{\frac{1}{3}} K^{\frac{1}{3}} T^{\frac{2}{3}})$ 的损失最坏上限。我们还提供了更精细的上限,证明该算法能够适应到达模式,并在到达模式更有利时实现更好的性能。我们利用匹配的下限来补充这两个上限。接下来,当输入属于连续域,实验的输出是具有有界 RKHS 范数的光滑函数时,我们研究该问题。在 $d$ 维度下的 $T$ 轮后,我们证明损失在具有平方指数核的 RKHS 中被界定为 $O(B^{\frac{1}{d+3}} T^{\frac{d+2}{d+3}})$,在具有 Mat\'ern 核的 RKHS 中为 $O(B^{\frac{1}{2d+3}} T^{\frac{2d+2}{2d+3}})$。我们的实证评估表明,在数个合成实验和两个医学和天文学实验中,我们的方法优于其他基线方法。