We show a slightly simpler proof the following theorem by I. Dinur, O. Regev, and C. Smyth: for all $c \geq 2$, it is NP-hard to find a $c$-colouring of a 2-coloruable 3-uniform hypergraph. We recast this result in the algebraic framework for Promise CSPs, using only a weaker version of the PCP theorem.
翻译:我们展示了I. Dinur、O. Regev和C. Smyth的以下理论的简单证据:对于所有$c\geq 2 $,很难找到一个2色3异形高压仪的彩色。我们重新将这一结果输入了承诺CSP的代数框架,只使用了较弱的五氯苯酚理论版本。