Evaluation metrics are a key ingredient for progress of text generation systems. In recent years, several BERT-based evaluation metrics have been proposed (including BERTScore, MoverScore, BLEURT, etc.) which correlate much better with human assessment of text generation quality than BLEU or ROUGE, invented two decades ago. However, little is known what these metrics, which are based on black-box language model representations, actually capture (it is typically assumed they model semantic similarity). In this work, we \wei{use a simple regression based global explainability technique to} disentangle metric scores along linguistic factors, including semantics, syntax, morphology, and lexical overlap. We show that the different metrics capture all aspects to some degree, but that they are all substantially sensitive to lexical overlap, just like BLEU and ROUGE. This exposes limitations of these novelly proposed metrics, which we also highlight in an adversarial test scenario.


翻译:近些年来,提出了几项基于BERT的基于BERT的评估指标(包括BERTScore、MolerScore、BLEURT等),这些指标与人类对文本生成质量的评估相比,与20年前发明的BLEU或ROUGE相比,与人类对文本生成质量的评估更加相关。然而,很少有人知道这些基于黑箱语言模型表达方式的衡量标准是什么(通常假设它们模拟语义相似性)。在这项工作中,我们使用一种基于简单回归的全球解释技术来分解语言因素,包括语义学、语法、形态学和词汇重叠。我们表明,不同的指标在某种程度上涵盖了所有方面,但它们都对词汇重叠具有高度敏感性,就像BLEU和ROUGE一样。这暴露了这些新提出的指标的局限性,我们也在对抗性测试情景中强调了这一点。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
一文带你了解MultiBERT
深度学习自然语言处理
16+阅读 · 2020年6月28日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年12月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Visualizing and Measuring the Geometry of BERT
Arxiv
7+阅读 · 2019年10月28日
Arxiv
5+阅读 · 2019年4月21日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关资讯
一文带你了解MultiBERT
深度学习自然语言处理
16+阅读 · 2020年6月28日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员