Numerous government initiatives (e.g. the EU with GDPR) are coming to the conclusion that the increasing complexity of modern software systems must be contrasted with some Rights to Explanation and metrics for the Impact Assessment of these tools, that allow humans to understand and oversee the output of Automated Decision Making systems. Explainable AI was born as a pathway to allow humans to explore and understand the inner working of complex systems. But establishing what is an explanation and objectively evaluating explainability, are not trivial tasks. With this paper, we present a new model-agnostic metric to measure the Degree of eXplainability of (correct) information in an objective way, exploiting a specific theoretical model from Ordinary Language Philosophy called the Achinstein's Theory of Explanations, implemented with an algorithm relying on deep language models for knowledge graph extraction and information retrieval. In order to understand whether this metric is actually behaving as explainability is expected to, we have devised a few experiments and user-studies involving more than 160 participants evaluating two realistic AI-based systems for healthcare and finance using famous AI technology including Artificial Neural Networks and TreeSHAP. The results we obtained are very encouraging, suggesting that our proposed metric for measuring the Degree of eXplainability is robust on several scenarios and it can be eventually exploited for a lawful Impact Assessment of an Automated Decision Making system.


翻译:许多政府倡议(例如欧盟与GDPR)正在得出结论,现代软件系统日益复杂,必须将其与这些工具的某些解释权和影响评估衡量标准形成对比,使人类能够理解和监督自动决策系统的产出。可以解释的AI是人类探索和理解复杂系统内部运行的途径。但是,确定什么是解释和客观评估的解释性任务并不是微不足道的任务。通过本文件,我们提出了一个新的模型 -- -- 不可否认的衡量标准,以客观的方式衡量(纠正)信息的易异性度,利用普通语言哲学中称为 " Achinstein解释理论 " 的具体理论模型,该模型采用一种算法,依靠深语言模型进行知识图形提取和信息检索。为了了解这一指标是否真正具有解释性,我们设计了一些实验和用户研究,涉及160多名参与者,他们利用包括人工神经网络和树树本系统在内的著名AI技术,对保健和金融两个现实性系统进行了评价,利用一种名为 " 解释性解释性解释性解释性解释性解释性解释性理论 " 和解释性理论性理论性理论性理论性模型来测量这些系统。我们最终可以利用一种可衡量的模型和可测量性模型。我们获得的结果可以用来测定性地测定性地测量。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
14+阅读 · 2020年9月1日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员