The (extended) Binary Value Principle (eBVP: $\sum_{i=1}^n x_i2^{i-1} = -k$ for $k>0$ and $x^2_i=x_i$) has received a lot of attention recently, several lower bounds have been proved for it (Alekseev et al 2020, Alekseev 2021, Part and Tzameret 2021). Also it has been shown (Alekseev et al 2020) that the probabilistically verifiable Ideal Proof System (IPS) (Grochow and Pitassi 2018) together with eBVP polynomially simulates a similar semialgebraic proof system. In this paper we consider Polynomial Calculus with the algebraic version of Tseitin's extension rule (Ext-PC). Contrary to IPS, this is a Cook--Reckhow proof system. We show that in this context eBVP still allows to simulate similar semialgebraic systems. We also prove that it allows to simulate the Square Root Rule (Grigoriev and Hirsch 2003), which is absolutely unclear in the context of ordinary Polynomial Calculus. On the other hand, we demonstrate that eBVP probably does not help in proving exponential lower bounds for Boolean tautologies: we show that an Ext-PC (even with the Square Root Rule) derivation of any such tautology from eBVP must be of exponential size.
翻译:(extend) 二进制值原则 (eBVP: $\sum ⁇ i=1 ⁇ n x_i2 ⁇ i-1} = -k$, $k>0美元和$x%2_i=x_i$) 最近受到了很多关注, 一些下限为它证明( Alekseev等人 2020, Alekseev 2021, Part and Tzameret 2021) 。 另外, 也显示 (Alekseev等人 等人 2020 ), rocho 和 Pitassi 2018 = -k$k$k$@k>0, 美元和 $x%2_i=x_ 美元 美元) 和 美元= - k$k$k$k$k$0, 最近受到了很多关注。 。 本文中我们考虑的多进制调调调调调量值值值( Ext- PC) 。 与 IPSIPS 相反, 这是 Cook- Reckhow 的验证系统。 我们显示, eBP 仍然可以模拟类似的 eal- eVB eBreckbrial 系统 。 我们也可以在 中展示 的直调值 的直调值 。