Policy optimization methods are one of the most widely used classes of Reinforcement Learning (RL) algorithms. However, theoretical understanding of these methods remains insufficient. Even in the episodic (time-inhomogeneous) tabular setting, the state-of-the-art theoretical result of policy-based method in \citet{shani2020optimistic} is only $\tilde{O}(\sqrt{S^2AH^4K})$ where $S$ is the number of states, $A$ is the number of actions, $H$ is the horizon, and $K$ is the number of episodes, and there is a $\sqrt{SH}$ gap compared with the information theoretic lower bound $\tilde{\Omega}(\sqrt{SAH^3K})$. To bridge such a gap, we propose a novel algorithm Reference-based Policy Optimization with Stable at Any Time guarantee (\algnameacro), which features the property "Stable at Any Time". We prove that our algorithm achieves $\tilde{O}(\sqrt{SAH^3K} + \sqrt{AH^4K})$ regret. When $S > H$, our algorithm is minimax optimal when ignoring logarithmic factors. To our best knowledge, RPO-SAT is the first computationally efficient, nearly minimax optimal policy-based algorithm for tabular RL.


翻译:政策优化方法是最广泛使用的强化学习(RL)算法类别之一。 然而,对于这些方法的理论理解仍然不够。 即使在( 时间- 无异) 列表设置中, 基于政策的方法在\ citet{shani2020optimatistit} 中的最新理论结果只是$\tilde{O}( sqrt{S ⁇ 2AH4K}) 美元, 美元是州数, 美元是行动的数量, 美元是地平线, 美元是事件的数量, 美元是事件的数量, 而且与基于政策的方法在较低约束 $\ tilde_Omega} (\qrt{Sah3K} ) 的信息相比, 最先进的算法基于参考的迷你政策优化, 我们的最佳算法在任何时间保证(\ anamecro) 时显示属性“ 时间表 ” 。 我们的算法是 美元=QQrqrqral{S&Qrqrr} 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年8月8日
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
53+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2021年8月8日
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
53+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员