We show that the consistency problem for Statistical EL ontologies, defined by Pe{\~{n}}aloza and Potyka, is ExpTime-hard. Together with existing ExpTime upper bounds, we conclude ExpTime-completeness of the logic. Our proof goes via a reduction from the consistency problem for EL extended with negation of atomic concepts.
翻译:我们发现,由Pe ⁇ n ⁇ aloza和Potyka定义的统计EL内核学的连贯性问题非常严重。 与现有的Extrame Times上限一起,我们得出了逻辑的耗时性。 我们的证据是通过减少EL内核的连贯性问题和对原子概念的否定来证明的。