Let $\mathbf{X}$ be a random variable uniformly distributed on the discrete cube $\left\{ -1,1\right\} ^{n}$, and let $T_{\rho}$ be the noise operator acting on Boolean functions $f:\left\{ -1,1\right\} ^{n}\to\left\{ 0,1\right\} $, where $\rho\in[0,1]$ is the noise parameter, representing the correlation coefficient between each coordination of $\mathbf{X}$ and its noise-corrupted version. Given a convex function $\Phi$ and the mean $\mathbb{E}f(\mathbf{X})=a\in[0,1]$, which Boolean function $f$ maximizes the $\Phi$-stability $\mathbb{E}\left[\Phi\left(T_{\rho}f(\mathbf{X})\right)\right]$ of $f$? Special cases of this problem include the (symmetric and asymmetric) $\alpha$-stability problems and the "Most Informative Boolean Function" problem. In this paper, we provide several upper bounds for the maximal $\Phi$-stability. Considering specific $\Phi$'s, we partially resolve Mossel and O'Donnell's conjecture on $\alpha$-stability with $\alpha>2$, Li and M\'edard's conjecture on $\alpha$-stability with $1<\alpha<2$, and Courtade and Kumar's conjecture on the "Most Informative Boolean Function" which corresponds to a conjecture on $\alpha$-stability with $\alpha=1$. Our proofs are based on discrete Fourier analysis, optimization theory, and improvements of the Friedgut--Kalai--Naor (FKN) theorem. Our improvements of the FKN Theorem are sharp or asymptotically sharp for certain cases.


翻译:Let\ mathbf{X} 美元是一个随机变量, 在离散立方体上平均分配 $\ left\ - 1,1\right\\ ⁇ ⁇ } 美元, 而让 $T ⁇ rho} 美元成为在布林函数上活动的噪音操作员 $f:\ left\ - 1,1\\\\\\\ lef\ 0. 1, 美元是噪声参数, 代表每个协调 $\ mathb{X} 和它的噪声- 碎声版本之间的相关系数。 鉴于 convex 函数 $\ phi$\ 1, 美元 美元 和 美元 美元 美元 的数值=\\\\ 美元 美元= f(mathbfrefareax) = a fleflex $ 美元, 布林林函数最大限度地 $ $\\\\\\\ mathbreabreal dreal deal deal deal deal romagistrations, 和 romodia- hys- demodia- hustyal disl ro- rofiltial 和 rotial rotial rotial ro- romotial romotial rotial rotial ro ro ro ro ro ro ro ro 和 rotial 和 rotial ro rotial ro ro ro ro ro ro 和 roti ro ro ro ro ro ro ro ro ro 和 和 和 ro- ro- ro- 和 和 ro- ro- ro- ro- ro- ro- ro- ro- ro- 和 和 ro- 和 和 和 和 和 ro- ro- ro- ro- ro- ro- ro- ro- ro- ro- ro- ro- ro- y- ro- ro- ro- ro- ro- ro- ro- ro- ro-

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员