This paper develops several interesting, significant, and interconnected approaches to nonparametric or semi-parametric statistical inferences. The overwhelmingly favoured maximum likelihood estimator (MLE) under parametric model is renowned for its strong consistency and optimality generally credited to Cramer. These properties, however, falter when the model is not regular or not completely accurate. In addition, their applicability is limited to local maxima close to the unknown true parameter value. One must therefore ascertain that the global maximum of the likelihood is strongly consistent under generic conditions (Wald, 1949). Global consistency is also a vital research problem in the context of empirical likelihood (Owen, 2001). The EL is a ground-breaking platform for nonparametric statistical inference. A subsequent milestone is achieved by placing estimating functions under the EL umbrella (Qin and Lawless, 1994). The resulting profile EL function possesses many nice properties of parametric likelihood but also shares the same shortcomings. These properties cannot be utilized unless we know the local maximum at hand is close to the unknown true parameter value. To overcome this obstacle, we first put forward a clean set of conditions under which the global maximum is consistent. We then develop a global maximum test to ascertain if the local maximum at hand is in fact a global maximum. Furthermore, we invent a global maximum remedy to ensure global consistency by expanding the set of estimating functions under EL. Our simulation experiments on many examples from the literature firmly establish that the proposed approaches work as predicted. Our approaches also provide superior solutions to problems of their parametric counterparts investigated by DeHaan (1981), Veall (1991), and Gan and Jiang (1999).


翻译:本文开发了几种有趣、重要和相互关联的非参数或半参数统计推断方法。通常被认为是克拉默(Cramer)所赞扬的最大似然估计器(MLE)在参数模型下表现出强一致性和最优性的优点在模型不是正则或不完全准确时会有所不足。此外,它们的适用性仅限于接近未知真实参数值的局部最大值。因此,我们必须确定似然函数的全局最大值在通用条件下是强一致的(沃尔德(Wald),1949)。全局一致性在经验似然(Empirical Likelihood)的情况下也是一个重要的研究问题(Owen,2001)。EL是一个开创性的非参数统计推断平台。随后,将估计函数放在EL伞下(Qin and Lawless,1994)是一个里程碑式的成就。由此产生的轮廓EL函数具有许多与参数似然的好性质,但也共享相同的缺点。除非我们知道手头的局部最大值接近未知的真实参数值,否则这些属性是无法利用的。为了克服这个障碍,我们首先提出了一组干净的条件,可以在这些条件下确定全局最大值是一致的。然后,我们开发了一个全局最大值检验,以确定手头的局部最大值是否实际上是全局最大值。此外,我们发明了一个全局最大值补救方法,通过扩展EL下的估计函数集来确保全局一致性。我们对文献中的许多示例进行的仿真实验坚定地证明了所提出的方法的有效性。我们的方法还提供了优于DeHaan(1981)、Veall(1991)和Gan and Jiang(1999)所研究的他们的参数对应问题的优越解决方案。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员