We present FMAS, a fast multi-objective neural architecture search framework for semantic segmentation. FMAS subsamples the structure and pre-trained parameters of DeepLabV3+, without fine-tuning, dramatically reducing training time during search. To further reduce candidate evaluation time, we use a subset of the validation dataset during the search. Only the final, Pareto non-dominated, candidates are ultimately fine-tuned using the complete training set. We evaluate FMAS by searching for models that effectively trade accuracy and computational cost on the PASCAL VOC 2012 dataset. FMAS finds competitive designs quickly, e.g., taking just 0.5 GPU days to discover a DeepLabV3+ variant that reduces FLOPs and parameters by 10$\%$ and 20$\%$ respectively, for less than 3$\%$ increased error. We also search on an edge device called GAP8 and use its latency as the metric. FMAS is capable of finding 2.2$\times$ faster network with 7.61$\%$ MIoU loss.
翻译:我们提出了 FMAS,一种快速的多目标神经结构搜索框架,用于语义分割。 FMAS 对 DeepLabV3+ 的结构和预训练参数进行子抽样,无需微调,在搜索过程中显著减少了训练时间。为了进一步降低候选模型的评估时间,我们在搜索期间使用验证数据集的子集。仅最终的 Pareto 非支配的候选模型最终使用完整的训练集进行微调。我们通过在 PASCAL VOC 2012 数据集上寻找在精度和计算成本之间有效平衡的模型来评估 FMAS。 FMAS 可以快速找到竞争性的设计,例如,仅需 0.5 GPU 天即可发现一种 DeepLabV3+ 变体,可以将 FLOPS 和参数分别减少 10% 和 20%,而误差仅增加不到 3%。我们还在名为 GAP8 的边缘设备上进行搜索,并以其延迟作为评估指标。 FMAS 能够找到 2.2 倍更快的网络,且 MIoU 损失不超过 7.61%。