We present a multi-level Monte Carlo (MLMC) algorithm with adaptively refined meshes and accurately computed stopping-criteria utilizing adjoint-based a posteriori error analysis for differential equations. This is in contrast to classical MLMC algorithms that use either a hierarchy of uniform meshes or adaptively refined meshes based on Richardson extrapolation, and employ a stopping criteria that relies on assumptions on the convergence rate of the MLMC levels. This work develops two adaptive refinement strategies for the MLMC algorithm. These strategies are based on a decomposition of an error estimate of the MLMC bias and utilize variational analysis, adjoint problems and computable residuals.
翻译:我们提出了一个多层次的蒙特卡洛(MLMC)算法,该算法采用适应性改进的间歇和精确计算停止标准,对差异方程进行基于附带错误分析,这与传统的MLMC算法形成对照,这种算法使用统一的间歇物等级或基于理查森外推法的适应性改进的间歇物,并采用基于对MLMC水平趋同率的假设的停止标准。这项工作为MLMC算法制定了两种适应性改进战略。这些战略的基础是对MLMC偏差的误差估计进行分解,并使用变式分析、连带问题和可计算残留物。