While deep learning based image retrieval is reported to be vulnerable to adversarial attacks, existing works are mainly on image-to-image retrieval with their attacks performed at the front end via query modification. By contrast, we present in this paper the first study about a threat that occurs at the back end of a text-to-image retrieval (T2IR) system. Our study is motivated by the fact that the image collection indexed by the system will be regularly updated due to the arrival of new images from various sources such as web crawlers and advertisers. With malicious images indexed, it is possible for an attacker to indirectly interfere with the retrieval process, letting users see certain images that are completely irrelevant w.r.t. their queries. We put this thought into practice by proposing a novel Trojan-horse attack (THA). In particular, we construct a set of Trojan-horse images by first embedding word-specific adversarial information into a QR code and then putting the code on benign advertising images. A proof-of-concept evaluation, conducted on two popular T2IR datasets (Flickr30k and MS-COCO), shows the effectiveness of the proposed THA in a white-box mode.


翻译:虽然根据深层次学习的图像检索据报容易受到对抗性攻击,但现有的作品主要是通过查询修改在前端进行攻击的图像到图像检索,与此相反,我们在本文件中提出了关于文本到图像检索系统(T2IR)后端发生的威胁的第一份研究报告。我们的研究的动机是,由于网络爬行者和广告商等各种来源的新图像的到来,系统索引化的图像收集将定期更新。在对恶意图像进行索引化后,攻击者有可能间接干扰检索过程,让用户看到某些完全无关的图像。我们通过提出一部新的Trojan-homa攻击(THA)系统(THA),将这一想法付诸实践。特别是,我们首先将特定字词的对抗信息嵌入QR代码,然后将代码放入良性广告图像。在两个广受欢迎的 T2IR数据集(Flikr30k和MS-CO)上进行了概念验证评估,对两个广受欢迎的 THA(Frik30k)和M-CO-BAR 模式中的拟议THA-BAR-FA的效能展示。</s>

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员