Recently, Batch DropBlock network (BDB) has demonstrated its effectiveness on person image representation and re-ID task via feature erasing. However, BDB drops the features \textbf{randomly} which may lead to sub-optimal results. In this paper, we propose a novel Self-attention guided Adaptive DropBlock network (SaADB) for person re-ID which can \textbf{adaptively} erase the most discriminative regions. Specifically, SaADB first obtains a self-attention map by channel-wise pooling and returns a drop mask by thresholding the self-attention map. Then, the input features and self-attention guided drop mask are multiplied to generate the dropped feature maps. Meanwhile, we utilize the spatial and channel attention to learn a better feature map and iteratively train with the feature dropping module for person re-ID. Experiments on several benchmark datasets demonstrate that the proposed SaADB significantly beats the prevalent competitors in person re-ID.
翻译:最近, Batch dropBlock 网络(BDB) 展示了它在个人图像显示和通过特征擦除重新开发任务上的有效性。 但是, BDB 降低了可能导致亚最佳结果的 \ textbf{ ranomly} 特征。 在本文中, 我们提议为个人重新开发提供一个新的自我关注引导的适应性滴Block 网络( SaADB ), 这个网络可以消除最歧视的区域。 具体地说, SaADB 最初通过频道共享获得自控地图, 并通过启动自控地图返回一个自控遮罩。 然后, 输入功能和自控自控自控自控自带式的滴罩会乘以生成被丢的特征地图。 与此同时, 我们利用空间和引导关注来学习更好的特征图和迭接式培训, 与个人再开发的特性投射模块。 在几个基准数据集上进行的实验表明, 拟议的 SaADB 大大地击败了个人再开发中的竞争者 。