Recent research has shown that language models exploit `artifacts' in benchmarks to solve tasks, rather than truly learning them, leading to inflated model performance. In pursuit of creating better benchmarks, we propose VAIDA, a novel benchmark creation paradigm for NLP, that focuses on guiding crowdworkers, an under-explored facet of addressing benchmark idiosyncrasies. VAIDA facilitates sample correction by providing realtime visual feedback and recommendations to improve sample quality. Our approach is domain, model, task, and metric agnostic, and constitutes a paradigm shift for robust, validated, and dynamic benchmark creation via human-and-metric-in-the-loop workflows. We evaluate via expert review and a user study with NASA TLX. We find that VAIDA decreases effort, frustration, mental, and temporal demands of crowdworkers and analysts, simultaneously increasing the performance of both user groups with a 45.8% decrease in the level of artifacts in created samples. As a by product of our user study, we observe that created samples are adversarial across models, leading to decreases of 31.3% (BERT), 22.5% (RoBERTa), 14.98% (GPT-3 fewshot) in performance.


翻译:最近的研究显示,语言模式利用了解决任务的基准中的`艺术行为',而不是真正地学习它们,从而导致模型业绩的夸大。我们建议VAIDA,这是国家劳工局新的基准创建范例,重点是指导人群工人,这是解决基准特殊性特点的探索不足的一面。 VAIDA通过提供实时视觉反馈和建议来帮助校正样本,以提高样本质量。我们的方法是领域、模型、任务和计量的洞察力,并构成通过人和计量流动工作流程实现强健、验证和动态基准创建的范式转变。我们通过专家审查和与美国航天局TLX的用户研究来进行评估。我们发现,VAIDA降低了人群工人和分析人员的努力、挫折、精神和时间需求,同时提高了两个用户群体的业绩,在创建样本中的工艺品水平下降了45.8%。我们通过用户研究发现,创建的样本是针对各种模型的对立,导致31.3%(BERT),22.5%(ROBERT-TA),14.98(PT)的绩效下降。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员