In the paper, we propose a class of accelerated zeroth-order and first-order momentum methods for both nonconvex mini-optimization and minimax-optimization. Specifically, we propose a new accelerated zeroth-order momentum (Acc-ZOM) method for black-box mini-optimization. Moreover, we prove that our Acc-ZOM method achieves a lower query complexity of $\tilde{O}(d^{3/4}\epsilon^{-3})$ for finding an $\epsilon$-stationary point, which improves the best known result by a factor of $O(d^{1/4})$ where $d$ denotes the variable dimension. In particular, the Acc-ZOM does not require large batches required in the existing zeroth-order stochastic algorithms. Meanwhile, we propose an accelerated \textbf{zeroth-order} momentum descent ascent (Acc-ZOMDA) method for \textbf{black-box} minimax-optimization, which obtains a query complexity of $\tilde{O}((d_1+d_2)^{3/4}\kappa_y^{4.5}\epsilon^{-3})$ without large batches for finding an $\epsilon$-stationary point, where $d_1$ and $d_2$ denote variable dimensions and $\kappa_y$ is condition number. Moreover, we propose an accelerated \textbf{first-order} momentum descent ascent (Acc-MDA) method for \textbf{white-box} minimax optimization, which has a gradient complexity of $\tilde{O}(\kappa_y^{4.5}\epsilon^{-3})$ without large batches for finding an $\epsilon$-stationary point. In particular, our Acc-MDA can obtain a lower gradient complexity of $\tilde{O}(\kappa_y^{2.5}\epsilon^{-3})$ with a batch size $O(\kappa_y^4)$. Extensive experimental results on black-box adversarial attack to deep neural networks and poisoning attack to logistic regression demonstrate efficiency of our algorithms.
翻译:在纸张中, 我们提议了一种加速的零- 平流层和一阶变异度 方法, 用于寻找 $\ epsilent $- modial modition 和 minimax- optialization 。 具体地说, 我们提议了一种新的 加速的零- ZOM 方法 来降低查询复杂性$\ telde{ O} (d_ 3/4\ ephil_ ecilentral_ divil_ 3}, 用来寻找 美元- modition 美元- dismodition 和 美元- modition_ a modition_ a mocial_ dal_ dal_ dival_ laxilational a prestial_ moudal_ diology_ a mocial_ modiaxal_ dismodia_ dal_ dismology_ a lax_ a modia_ dal_ dal_ dal_ dismoudal_ a modia_ demoudal_ ta, 我们modia_ a lax_ a demodia_ a lax_ d_ a laxxxxx_ a lax_ d_ a lax_ d_ a lax_ a moud_ d_ d_ d) laxxx_ d_ d_ a laxxxxxxxxxxx_ d) lax moud moud moud moud moud moud moud moud mo mo mo moud moud moud laxxxxx_ a laxxx_ d) moud a moud mo moud a ro ro mo moud moud mo moudal mocal) mocal mocal la mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo mo moud mo mo mo mo mo mo mo mo mo mo mo mo mo