Automatic summarization of legal texts is an important and still a challenging task since legal documents are often long and complicated with unusual structures and styles. Recent advances of deep models trained end-to-end with differentiable losses can well-summarize natural text, yet when applied to legal domain, they show limited results. In this paper, we propose to use reinforcement learning to train current deep summarization models to improve their performance on the legal domain. To this end, we adopt proximal policy optimization methods and introduce novel reward functions that encourage the generation of candidate summaries satisfying both lexical and semantic criteria. We apply our method to training different summarization backbones and observe a consistent and significant performance gain across 3 public legal datasets.


翻译:法律文本的自动总结是一项重要任务,而且仍是一项艰巨的任务,因为法律文件往往冗长而复杂,具有不寻常的结构和风格。最近经过培训的深层次模型的近况,最终到最终,损失程度各异,可以很好地概括自然文本,但在应用到法律领域时,这些文本显示出有限的结果。在本文件中,我们提议利用强化学习来培训当前的深度总结模型,以提高其在法律领域的绩效。为此,我们采用了近似的政策优化方法,并引入新的奖励功能,鼓励生成符合法律标准和语义标准的候选摘要。我们运用我们的方法培训不同的总结骨干,并观察到在三个公共法律数据集中取得一致和显著的业绩收益。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
3+阅读 · 2019年6月5日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员