Continual learning tackles the setting of learning different tasks sequentially. Despite the lots of previous solutions, most of them still suffer significant forgetting or expensive memory cost. In this work, targeted at these problems, we first study the continual learning process through the lens of information theory and observe that forgetting of a model stems from the loss of \emph{information gain} on its parameters from the previous tasks when learning a new task. From this viewpoint, we then propose a novel continual learning approach called Bit-Level Information Preserving (BLIP) that preserves the information gain on model parameters through updating the parameters at the bit level, which can be conveniently implemented with parameter quantization. More specifically, BLIP first trains a neural network with weight quantization on the new incoming task and then estimates information gain on each parameter provided by the task data to determine the bits to be frozen to prevent forgetting. We conduct extensive experiments ranging from classification tasks to reinforcement learning tasks, and the results show that our method produces better or on par results comparing to previous state-of-the-arts. Indeed, BLIP achieves close to zero forgetting while only requiring constant memory overheads throughout continual learning.
翻译:连续学习会按顺序设置不同的任务。 尽管以前有许多解决方案, 大部分仍然会大量被遗忘或花费昂贵的记忆成本。 在这项工作中, 我们首先通过信息理论的透镜研究持续学习过程, 并观察到, 忽略模型源于在学习新任务时, 先前任务参数上的 emph{ 信息增益。 从这个角度出发, 我们然后提议一种新型的持续学习方法, 叫做 Bit- level Information Proference (BLIP), 通过更新比特级别的参数来保存模型参数上的信息收益, 并且可以方便地执行参数量化。 更具体地说, BLIP 首先是对新任务进行神经网络的重量分级化, 然后对任务数据提供的每个参数的增益进行估算, 以确定要冻结的比特, 防止遗忘。 我们从分类任务到强化学习任务, 其结果显示, 我们的方法比以往的状态都更好或平均产生结果。 事实上, BLIP 实现接近于零遗忘, 而在整个学习过程中只需要不断的记忆管理。