The adoption of machine learning in materials science has rapidly transformed materials property prediction. Hurdles limiting full capitalization of recent advancements in machine learning include the limited development of methods to learn the underlying interactions of multiple elements, as well as the relationships among multiple properties, to facilitate property prediction in new composition spaces. To address these issues, we introduce the Hierarchical Correlation Learning for Multi-property Prediction (H-CLMP) framework that seamlessly integrates (i) prediction using only a material's composition, (ii) learning and exploitation of correlations among target properties in multi-target regression, and (iii) leveraging training data from tangential domains via generative transfer learning. The model is demonstrated for prediction of spectral optical absorption of complex metal oxides spanning 69 3-cation metal oxide composition spaces. H-CLMP accurately predicts non-linear composition-property relationships in composition spaces for which no training data is available, which broadens the purview of machine learning to the discovery of materials with exceptional properties. This achievement results from the principled integration of latent embedding learning, property correlation learning, generative transfer learning, and attention models. The best performance is obtained using H-CLMP with Transfer learning (H-CLMP(T)) wherein a generative adversarial network is trained on computational density of states data and deployed in the target domain to augment prediction of optical absorption from composition. H-CLMP(T) aggregates multiple knowledge sources with a framework that is well-suited for multi-target regression across the physical sciences.
翻译:为解决这些问题,我们引入了 " 材料科学的机械关联学习 " 框架,无缝整合了以下内容:(一) 仅使用材料构成的预测,(二) 学习和利用多目标回归中目标属性之间的相对关系,(三) 通过基因转换学习,利用正统领域的培训数据,从正统领域学习多种要素的基本互动,以及多种属性之间的关系,以便利在新的构成空间进行财产预测;为解决这些问题,我们引入了 " 材料科学的机械关联学习促进多种财产预测(H-CLMP) " 框架,无缝地整合了(一) 仅使用材料构成的预测,(二) 学习和利用多目标属性回归中目标属性之间的相对关系,(三) 通过基因转换学习,利用正统领域的培训数据数据数据数据数据数据数据,通过HCLMP的光光学吸收复杂的氧化物氧化物(HCLM-CR-CRM) 模型,通过经过培训的MLMA 模型,最佳地将机制学习基础学习、遗传转移和关注网络。