Probabilistic graphical models (PGMs) provide a compact representation of knowledge that can be queried in a flexible way: after learning the parameters of a graphical model once, new probabilistic queries can be answered at test time without retraining. However, when using undirected PGMS with hidden variables, two sources of error typically compound in all but the simplest models (a) learning error (both computing the partition function and integrating out the hidden variables is intractable); and (b) prediction error (exact inference is also intractable). Here we introduce query training (QT), a mechanism to learn a PGM that is optimized for the approximate inference algorithm that will be paired with it. The resulting PGM is a worse model of the data (as measured by the likelihood), but it is tuned to produce better marginals for a given inference algorithm. Unlike prior works, our approach preserves the querying flexibility of the original PGM: at test time, we can estimate the marginal of any variable given any partial evidence. We demonstrate experimentally that QT can be used to learn a challenging 8-connected grid Markov random field with hidden variables and that it consistently outperforms the state-of-the-art AdVIL when tested on three undirected models across multiple datasets.


翻译:概率图形模型(PGMS)提供了可以灵活查询的精确的知识表达方式:在一次学习图形模型参数之后,可以在不再再培训的情况下在测试时间回答新的概率问题。然而,在使用隐性变量的非方向 PGMS 时,通常会有两个错误源,但最简单的模型除外:(a) 学习错误(计算分区函数和整合隐藏变量都是难以解决的);(b) 预测错误(精确推断也是难以解决的)。在这里,我们引入了查询培训(QT),这是一个用于学习PGM的机制,这个机制最优化地用于与该模型匹配的近似推算算法。由此产生的PGM是一个更差的数据模型(按可能性衡量),但为了产生更好的边际来计算给定的推理算算法,它通常会(a) 学习错误(计算分区函数和整合隐藏变量是难以解决的);(b) 我们的方法保留原始 PGMM的查询灵活性:在测试时,我们可以根据任何部分证据估计任何变量的边际值。我们实验性地表明,QT可以用来学习一个充满挑战性的网格8连接的网格,在隐藏的多变数字段中,而连续地显示它不固定的多变数。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员