We focus on the use of proxy distributions, i.e., approximations of the underlying distribution of the training dataset, in both understanding and improving the adversarial robustness in image classification. While additional training data helps in adversarial training, curating a very large number of real-world images is challenging. In contrast, proxy distributions enable us to sample a potentially unlimited number of images and improve adversarial robustness using these samples. We first ask the question: when does adversarial robustness benefit from incorporating additional samples from the proxy distribution in the training stage? We prove that the difference between the robustness of a classifier on the proxy and original training dataset distribution is upper bounded by the conditional Wasserstein distance between them. Our result confirms the intuition that samples from a proxy distribution that closely approximates training dataset distribution should be able to boost adversarial robustness. Motivated by this finding, we leverage samples from state-of-the-art generative models, which can closely approximate training data distribution, to improve robustness. In particular, we improve robust accuracy by up to 6.1% and 5.7% in $l_{\infty}$ and $l_2$ threat model, and certified robust accuracy by 6.7% over baselines not using proxy distributions on the CIFAR-10 dataset. Since we can sample an unlimited number of images from a proxy distribution, it also allows us to investigate the effect of an increasing number of training samples on adversarial robustness. Here we provide the first large scale empirical investigation of accuracy vs robustness trade-off and sample complexity of adversarial training by training deep neural networks on 2K to 10M images.
翻译:我们的重点是使用代理数据分布,即,在理解和改进图像分类中的对抗性稳健性方面,模拟培训数据集的基本分布。虽然额外的培训数据有助于对抗性培训,但大量真实世界图像却具有挑战性。相反,代理性分布使我们能够抽样可能不受限制的图像,并利用这些样本提高对抗性强性强性。我们首先问一个问题:在培训阶段纳入代理性分布中的额外样本,对抗性强性强性何时会获益于更多的样本?我们证明,代理性和原始培训数据集分布的稳性强性与原始培训数据集分布的鲜明性之间的差别,在它们之间的有条件的瓦瑟斯坦距离上是最大的界限。我们的结果证实,从一个密切接近培训数据集分布的代理性样本中可以提高对抗性强性强的样本。我们利用最先进的组合模型利用最先进的模型,从而更近于培训数据分布的稳性强性强性,我们也可以用最强的正比值来提高培训的准确性比例,我们也可以用一个比值的基比值的基数,从一个比值的基数到一个比值的基数,从一个比值的基值的基数,从一个比值中,我们可以证明一个比值的基数,一个比值的基数,从一个比值的基数,比值的基数,比值的比值的比值的比值,比值的比值,比值的比值,比值,比值的比值,比值,比值可以提供一个比值,比值比值比值,比值可以提供一个比值,比值,比值,比值比值比值的比值的比值的比值的比值,比值,比值可以提供一个比值,比值的比值的比值可以提供一个比值,比值的比值比值比值比值的比值比值比值,比值,比值,比值,比值,比值的比值,比值的比值可以提供一个比值,比值的比值的比值比值比值的比值的比值的比值比值的比值比值比值比值的比值的比值比值比值比值比值比值比值比值比值比值比值比值比值,比值比值