Local density of point clouds is crucial for representing local details, but has been overlooked by existing point cloud compression methods. To address this, we propose a novel deep point cloud compression method that preserves local density information. Our method works in an auto-encoder fashion: the encoder downsamples the points and learns point-wise features, while the decoder upsamples the points using these features. Specifically, we propose to encode local geometry and density with three embeddings: density embedding, local position embedding and ancestor embedding. During the decoding, we explicitly predict the upsampling factor for each point, and the directions and scales of the upsampled points. To mitigate the clustered points issue in existing methods, we design a novel sub-point convolution layer, and an upsampling block with adaptive scale. Furthermore, our method can also compress point-wise attributes, such as normal. Extensive qualitative and quantitative results on SemanticKITTI and ShapeNet demonstrate that our method achieves the state-of-the-art rate-distortion trade-off.
翻译:点云的本地密度对于代表本地细节至关重要, 但被现有的点云压缩方法忽略了。 为了解决这个问题, 我们提议了一种新的深点云压缩方法, 保存本地密度信息。 我们的方法以自动编码器的方式发挥作用: 编码器向下标点进行取样, 并学习点性特征, 而解码器向上标出使用这些特征的点。 具体地说, 我们提议用三个嵌入器来编码本地几何和密度: 密度嵌入、 位置嵌入和祖先嵌入。 在解码过程中, 我们明确预测了每个点的升级系数, 以及上标点的方向和尺度。 为了减轻现有方法中的组集点问题, 我们设计了一个新的次点共振层, 以及一个与适应规模相加的块块块。 此外, 我们的方法还可以压缩点性属性, 如正常。 SmanticKITTI 和 ShapeNet 的广泛定性和定量结果显示, 我们的方法达到了状态的节率扭曲交易。