Mapping Low Dynamic Range (LDR) images with different exposures to High Dynamic Range (HDR) remains nontrivial and challenging on dynamic scenes due to ghosting caused by object motion or camera jitting. With the success of Deep Neural Networks (DNNs), several DNNs-based methods have been proposed to alleviate ghosting, they cannot generate approving results when motion and saturation occur. To generate visually pleasing HDR images in various cases, we propose a hybrid HDR deghosting network, called HyHDRNet, to learn the complicated relationship between reference and non-reference images. The proposed HyHDRNet consists of a content alignment subnetwork and a Transformer-based fusion subnetwork. Specifically, to effectively avoid ghosting from the source, the content alignment subnetwork uses patch aggregation and ghost attention to integrate similar content from other non-reference images with patch level and suppress undesired components with pixel level. To achieve mutual guidance between patch-level and pixel-level, we leverage a gating module to sufficiently swap useful information both in ghosted and saturated regions. Furthermore, to obtain a high-quality HDR image, the Transformer-based fusion subnetwork uses a Residual Deformable Transformer Block (RDTB) to adaptively merge information for different exposed regions. We examined the proposed method on four widely used public HDR image deghosting datasets. Experiments demonstrate that HyHDRNet outperforms state-of-the-art methods both quantitatively and qualitatively, achieving appealing HDR visualization with unified textures and colors.
翻译:基于像素和补丁级别的统一HDR成像方法
翻译后的摘要:
将具有不同曝光度的低动态范围(LDR)图像映射到高动态范围(HDR)上在动态场景下仍然存在难以克服的鬼影问题,这是由于物体运动或相机晃动所引起的。随着深度神经网络(DNN)的成功,已经提出了几种基于DNN的方法来缓解鬼影情况,但在运动和饱和度出现时仍然无法生成令人满意的结果。为了在各种情况下生成视觉上令人满意的HDR图像,我们提出了一个混合HDR去鬼影网络,名为HyHDRNet,以学习参考和非参考图像之间的复杂关系。所提出的HyHDRNet包括内容对齐子网络和基于Transformer的融合子网络。具体而言,为了有效地避免源文件中的鬼影情况,在内容对齐子网络中使用补丁聚合和鬼影关注来将来自其他非参考图像的相似内容与补丁级别集成在一起,并使用像素级别抑制不需要的组件。为了实现补丁级别和像素级别之间的相互指导,我们利用门控模块在鬼影和饱和区域中充分交换有用信息。此外,为了获得高质量的HDR图像,基于Transformer的融合子网络使用残差可变形Transformer块(RDTB)来自适应地合并不同的曝光区域的信息。我们在四个广泛使用的公共HDR图像去鬼影数据集上测试了所提出的方法。实验表明,HyHDRNet在定量和定性方面均优于现有方法,在统一的纹理和颜色下实现了吸引人的HDR可视化效果。