We introduce a novel compositional description of Feynman diagrams, with well-defined categorical semantics as morphisms in a dagger-compact category. Our chosen setting is suitable for infinite-dimensional diagrammatic reasoning, generalising the ZX calculus and other algebraic gadgets familiar to the categorical quantum theory community. The Feynman diagrams we define look very similar to their traditional counterparts, but are more general: instead of depicting scattering amplitude, they embody the linear maps from which the amplitudes themselves are computed, for any given initial and final particle states. This shift in perspective reflects into a formal transition from the syntactic, graph-theoretic compositionality of traditional Feynman diagrams to a semantic, categorical-diagrammatic compositionality. Because we work in a concrete categorical setting -- powered by non-standard analysis -- we are able to take direct advantage of complex additive structure in our description. This makes it possible to derive a particularly compelling characterisation for the sequential composition of categorical Feynman diagrams, which automatically results in the superposition of all possible graph-theoretic combinations of the individual diagrams themselves.
翻译:我们对Feynman 图表采用了新颖的构成描述, 在匕首- 方形分类中, 以清晰定义的绝对语义为形态。 我们所选择的设置适合无限的图解推理, 概括了绝对量子理论界熟悉的ZX 计算法和其他代数工具。 我们定义的Feynman 图表看起来非常类似于他们传统的对应方, 但比较笼统: 我们定义的 Feynman 图表不是描绘散射振幅, 而是包含用于计算振幅本身的线性地图, 而是包含任何给定的初始和最终粒子状态的线性地图。 这种视角的转变反映了从传统的Feynman 图表的合成、 图形- 理论构成性正式转型, 向所有可能的单项图形- 方形组合的超置位置。