Whereas interior point methods provide polynomial-time linear programming algorithms, the running time bounds depend on bit-complexity or condition measures that can be unbounded in the problem dimension. This is in contrast with the simplex method that always admits an exponential bound. We introduce a new polynomial-time path-following interior point method where the number of iterations also admits a combinatorial upper bound $O(2^{n} n^{1.5}\log n)$ for an $n$-variable linear program in standard form. This complements previous work by Allamigeon, Benchimol, Gaubert, and Joswig (SIAGA 2018) that exhibited a family of instances where any path-following method must take exponentially many iterations. The number of iterations of our algorithm is at most $O(n^{1.5}\log n)$ times the number of segments of any piecewise linear curve in the wide neighborhood of the central path. In particular, it matches the number of iterations of any path following interior point method up to this polynomial factor. The overall exponential upper bound derives from studying the `max central path', a piecewise-linear curve with the number of pieces bounded by the total length of $2n$ shadow vertex simplex paths. Our algorithm falls into the family of layered least squares interior point methods introduced by Vavasis and Ye (Math. Prog. 1996). In contrast to previous layered least squares methods that partition the kernel of the constraint matrix into coordinate subspaces, our method creates layers based on a general subspace providing more flexibility. Our result also implies the same bound on the number of iterations of the trust region interior point method by Lan, Monteiro, and Tsuchiya (SIOPT 2009).
翻译:内端点方法提供多元时间线性编程算法, 而运行的时间界限则取决于在问题维度中可以不受限制的比特复杂度或条件度量。 这与总承认指数性约束的简单度方法形成对比。 我们引入了一种新的多球时间路径内端点方法, 迭代数也允许组合上线性值$O( 2 ⁇ n} n ⁇ 1.5 ⁇ log n), 标准形式的可变线性程序。 这补充了 Allamigeon、 Genegimol、 Gaubert 和 Joswig (SIA GA 2018) 以往的工作, 显示了一系列事件, 其中任何遵循路径的方法必须包含指数性重复值。 我们的演算过程的迭代数最多是 $O( n ⁇ 1.5 ⁇ log n) 乘以在中央路径的宽处区间任何直线性线性曲线的数 。 具体来说, 它与任何遵循内部点至这个多球度的路径的比值数相匹配 。 总体多路段内端点的内端线性比, 将我们的直径直路路路路路路法路段路段路段路段路段路段路段路段路段到总以Sloder法路段路段路段路段路段路段路段路段路段路段路段 。 我们的底路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段至总路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路