Whereas interior point methods provide polynomial-time linear programming algorithms, the running time bounds depend on bit-complexity or condition measures that can be unbounded in the problem dimension. This is in contrast with the simplex method that always admits an exponential bound. We introduce a new polynomial-time path-following interior point method where the number of iterations also admits a combinatorial upper bound $O(2^{n} n^{1.5}\log n)$ for an $n$-variable linear program in standard form. This complements previous work by Allamigeon, Benchimol, Gaubert, and Joswig (SIAGA 2018) that exhibited a family of instances where any path-following method must take exponentially many iterations. The number of iterations of our algorithm is at most $O(n^{1.5}\log n)$ times the number of segments of any piecewise linear curve in the wide neighborhood of the central path. In particular, it matches the number of iterations of any path following interior point method up to this polynomial factor. The overall exponential upper bound derives from studying the `max central path', a piecewise-linear curve with the number of pieces bounded by the total length of $2n$ shadow vertex simplex paths. Our algorithm falls into the family of layered least squares interior point methods introduced by Vavasis and Ye (Math. Prog. 1996). In contrast to previous layered least squares methods that partition the kernel of the constraint matrix into coordinate subspaces, our method creates layers based on a general subspace providing more flexibility. Our result also implies the same bound on the number of iterations of the trust region interior point method by Lan, Monteiro, and Tsuchiya (SIOPT 2009).


翻译:内端点方法提供多元时间线性编程算法, 而运行的时间界限则取决于在问题维度中可以不受限制的比特复杂度或条件度量。 这与总承认指数性约束的简单度方法形成对比。 我们引入了一种新的多球时间路径内端点方法, 迭代数也允许组合上线性值$O( 2 ⁇ n} n ⁇ 1.5 ⁇ log n), 标准形式的可变线性程序。 这补充了 Allamigeon、 Genegimol、 Gaubert 和 Joswig (SIA GA 2018) 以往的工作, 显示了一系列事件, 其中任何遵循路径的方法必须包含指数性重复值。 我们的演算过程的迭代数最多是 $O( n ⁇ 1.5 ⁇ log n) 乘以在中央路径的宽处区间任何直线性线性曲线的数 。 具体来说, 它与任何遵循内部点至这个多球度的路径的比值数相匹配 。 总体多路段内端点的内端线性比, 将我们的直径直路路路路路路法路段路段路段路段路段路段路段路段路段到总以Sloder法路段路段路段路段路段路段路段路段路段路段路段 。 我们的底路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段至总路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路段路

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员