This tutorial is about cellular automata that exhibit 'cold dynamics'. By this we mean zero entropy, stabilization of all orbits, trivial asymptotic dynamics, etc. These are purely transient irreversible dynamics, but they capture many examples from the literature. A rich zoo of properties is presented and discussed: nilpotency and asymptotic, generic or mu-variants, unique ergodicity, convergence, bounded-changeness, freezingness. They all correspond to the 'cold dynamics' paradigm in some way, and we study their links and differences by various examples and results from the literature. Besides dynamical considerations, we also focus on computational aspects: we show how such 'cold cellular automata' can still compute under their dynamical constraint, and what are their computational limitation.
翻译:此教义是关于显示“ 冷动态” 的细胞自动成像。 我们指的是零星、 所有轨道的稳定、 微小的无症状动态等等。 这些纯粹是短暂的不可逆动态, 但是它们捕捉了许多文献中的例子。 展示和讨论了一个丰富的属性园: 无能和无能、 普通或多变、 独有的异性、 趋同、 约束性变化、 冷冻。 它们都在某种程度上与“ 冷动态” 模式相对应, 我们通过各种实例和文献结果来研究它们的联系和差异。 除了动态的考虑外, 我们还侧重于计算方面: 我们展示这些“ 冷细胞自动成形” 是如何在动态限制下进行计算的, 以及它们的计算限制是什么 。