In recent years, learning-based feature detection and matching have outperformed manually-designed methods in in-air cases. However, it is challenging to learn the features in the underwater scenario due to the absence of annotated underwater datasets. This paper proposes a cross-modal knowledge distillation framework for training an underwater feature detection and matching network (UFEN). In particular, we use in-air RGBD data to generate synthetic underwater images based on a physical underwater imaging formation model and employ these as the medium to distil knowledge from a teacher model SuperPoint pretrained on in-air images. We embed UFEN into the ORB-SLAM3 framework to replace the ORB feature by introducing an additional binarization layer. To test the effectiveness of our method, we built a new underwater dataset with groundtruth measurements named EASI (https://github.com/Jinghe-mel/UFEN-SLAM), recorded in an indoor water tank for different turbidity levels. The experimental results on the existing dataset and our new dataset demonstrate the effectiveness of our method.
翻译:近年来,基于学习的特征检测和匹配方法在空气中的性能已经超过手动设计的方法。但是,在水下场景中学习特征是具有挑战性的,因为缺乏带注释的水下数据集。本文提出了一种跨模态知识蒸馏框架,用于训练水下特征检测和匹配网络(UFEN)。具体来说,我们使用空气中的RGBD数据根据物理水下成像模型生成合成的水下图像,并将这些图像用作介质,从在空气中的图像预训练的SuperPoint教师模型中蒸馏知识。我们将UFEN嵌入ORB-SLAM3框架中,通过引入附加的二值化层来替换ORB特征。为了测试我们的方法的有效性,我们构建了一个新的水下数据集,命名为EASI(https://github.com/Jinghe-mel/UFEN-SLAM),针对不同浑浊度水平在室内水池中进行记录并进行了地面真值测量。对现有数据集和我们的新数据集的实验结果表明了我们方法的有效性。