Due to the absence of a library for non-linear function evaluation, so-called general-purpose secure multi-party computation (MPC) are not as ''general'' as MPC programmers expect. Prior arts either naively reuse plaintext methods, resulting in suboptimal performance and even incorrect results, or handcraft ad hoc approximations for specific functions or platforms. We propose a general technique, NFGen, that utilizes pre-computed discrete piecewise polynomials to accurately approximate generic functions using fixed-point numbers. We implement it using a performance-prediction-based code generator to support different platforms. Conducting extensive evaluations of 23 non-linear functions against six MPC protocols on two platforms, we demonstrate significant performance, accuracy, and generality improvements over existing methods.
翻译:由于缺乏非线性功能评估图书馆,所谓的通用安全多方计算(MPC)并不像MPC程序员所期望的那样“一般 ” 。 古老的艺术要么天真地再利用纯文本方法,导致不优化的性能,甚至结果不正确,要么手工艺为特定功能或平台提供临时近似。 我们提议一种一般技术,NFGen,即使用预先计算过的离散多式小节点计算,用固定点数准确估计通用功能。 我们用基于性能的代码生成器来实施它,以支持不同的平台。 对两个平台上的六种非线性功能进行广泛的评估,我们展示了与现有方法相比的显著性能、准确性和一般性改进。