Internet of Things (IoT) defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location. These IoT devices are connected to a network therefore prone to attacks. Various management tasks and network operations such as security, intrusion detection, Quality-of-Service provisioning, performance monitoring, resource provisioning, and traffic engineering require traffic classification. Due to the ineffectiveness of traditional classification schemes, such as port-based and payload-based methods, researchers proposed machine learning-based traffic classification systems based on shallow neural networks. Furthermore, machine learning-based models incline to misclassify internet traffic due to improper feature selection. In this research, an efficient multilayer deep learning based classification system is presented to overcome these challenges that can classify internet traffic. To examine the performance of the proposed technique, Moore-dataset is used for training the classifier. The proposed scheme takes the pre-processed data and extracts the flow features using a deep neural network (DNN). In particular, the maximum entropy classifier is used to classify the internet traffic. The experimental results show that the proposed hybrid deep learning algorithm is effective and achieved high accuracy for internet traffic classification, i.e., 99.23%. Furthermore, the proposed algorithm achieved the highest accuracy compared to the support vector machine (SVM) based classification technique and k-nearest neighbours (KNNs) based classification technique.


翻译:互联网(IoT)定义了连接互联网的装置网络,并分享了彼此之间和中央地点之间的大量数据。这些IoT装置与网络相连,因此容易受到攻击。各种管理任务和网络操作,如安全、入侵探测、服务质量提供、绩效监测、资源提供和交通工程等,要求进行交通分类。由于港口和有效载荷法等传统分类办法的无效,研究人员提议在浅神经网络的基础上建立机器学习的交通分类系统。此外,机器学习的模型由于功能选择不当而将互联网交通分类错误。在这一研究中,提出了高效的多层深层次学习分类系统,以克服对互联网交通进行分类的挑战。为了审查拟议技术的性能,使用摩尔数据集来培训叙级员。由于传统的分类方法,如港口和有效处理前的数据,并用深神经网络(DNNN)提取流动特征。特别是,使用最高英译分类模型来对互联网交通进行分类。实验结果显示,基于混合深层机算的精确度为甚高水平的互联网(K)。

0
下载
关闭预览

相关内容

【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
124+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员