Class imbalance naturally exists when train and test models in different domains. Unsupervised domain adaptation (UDA) augments model performance with only accessible annotations from the source domain and unlabeled data from the target domain. However, existing state-of-the-art UDA models learn domain-invariant representations and evaluate primarily on class-balanced data across domains. In this work, we propose an unsupervised domain adaptation approach via reinforcement learning that jointly leverages feature variants and imbalanced labels across domains. We experiment with the text classification task for its easily accessible datasets and compare the proposed method with five baselines. Experiments on three datasets prove that our proposed method can effectively learn robust domain-invariant representations and successfully adapt text classifiers on imbalanced classes over domains. The code is available at https://github.com/woqingdoua/ImbalanceClass.
翻译:当不同领域的培训和测试模型时,自然存在类别不平衡。无监管域适应(UDA)只能从源域和目标域的无标签数据获得可获取的注释和无标签数据,从而增强模型性能。然而,现有最先进的UDA模型学习了域内差异性表示法,并主要对跨域的分类平衡数据进行评估。在这项工作中,我们建议了一种未经监管的域适应方法,通过强化学习,共同利用不同域的特征变量和不平衡标签。我们试验了文本分类任务,以方便查阅的数据集,并将拟议方法与五个基线进行比较。对三个数据集的实验证明,我们拟议的方法能够有效地学习稳健的域内差异表示法,并成功地调整了域内不平衡类的文本分类者。该代码可在 https://github.com/woqingdoua/ImsuanceClass上查阅。