We consider the fair division problem of indivisible items. It is well-known that an envy-free allocation may not exist, and a relaxed version of envy-freeness, envy-freeness up to one item (EF1), has been widely considered. In an EF1 allocation, an agent may envy others' allocated shares, but only up to one item. In many applications, we may wish to specify a subset of prioritized agents where strict envy-freeness needs to be guaranteed from these agents to the remaining agents, while ensuring the whole allocation is still EF1. Prioritized agents may be those agents who are envious in a previous EF1 allocation, those agents who belong to underrepresented groups, etc. Motivated by this, we propose a new fairness notion named envy-freeness with prioritized agents "EFPrior", and study the existence and the algorithmic aspects for the problem of computing an EFPrior allocation. With additive valuations, the simple round-robin algorithm is able to compute an EFPrior allocation. In this paper, we mainly focus on general valuations. In particular, we present a polynomial-time algorithm that outputs an EFPrior allocation with most of the items allocated. When all the items need to be allocated, we also present polynomial-time algorithms for some well-motivated special cases.


翻译:我们考虑的是不可分割项目的公平划分问题,众所周知,不存在无忌妒的分配,对一个项目(EF1)的嫉妒无忌妒、无忌妒、无忌妒、无忌妒的宽松版本已经得到广泛考虑。在EF1的分配中,一个代理可能羡慕他人分配的股份,但最多只羡慕一个项目。在许多应用中,我们不妨指定一组优先的代理商,其中这些代理商需要保证严格的无忌妒性向其余代理商分配,同时确保整个分配仍然是EF1。优先的代理商可能是那些在以往EF1分配中羡慕的代理人、属于代表人数不足的团体的代理人等等。我们为此提出一个新的公平概念,名为“EFPrior”代理商的嫉妒无忌妒忌,并研究计算EFPrior分配问题的存在和算法方面。有了添加剂的估价,简单的圆本算法能够计算出EFPrior的分配额。在本文件中,我们主要侧重于一般的估价。特别是,我们提出一个名为“EFPrioral”的混合-时间算法,我们分配的最特殊项目在目前分配时需要一个特殊的项目。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员