We marshall the arguments for preferring Bayesian hypothesis testing and confidence sets to frequentist ones. We define admissible solutions to inference problems, noting that Bayesian solutions are admissible. We give six weaker common-sense criteria for solutions to inference problems, all failed by these frequentist methods but satisfied by any admissible method. We note that pseudo-Bayesian methods made by handicapping Bayesian methods to satisfy criteria on type I error rate makes them frequentist not Bayesian in nature. We give four examples showing the differences between Bayesian and frequentist methods; the first to be accessible to those with no calculus, the second to illustrate dramatically in abstract what is wrong with these frequentist methods, the third to show that the same problems arise, albeit to a lesser extent, in everyday statistical problems, and the fourth to illustrate how on some real-life inference problems Bayesian methods require less data than fixed sample-size (resp. pseudo-Bayesian) frequentist hypothesis testing by factors exceeding 3000 (resp 300) without recourse to informative priors. To address the issue of different parties with opposing interests reaching agreement on a prior, we illustrate the beneficial effects of a Bayesian "Let the data decide" policy both on results under a wide variety of conditions and on motivation to reach a common prior by consent. We show that in general the frequentist confidence level contains less relevant Shannon information than the Bayesian posterior, and give an example where no deterministic frequentist critical regions give any relevant information even though the Bayesian posterior contains up to the maximum possible amount. In contrast use of the Bayesian prior allows construction of non-deterministic critical regions for which the Bayesian posterior can be recovered from the frequentist confidence.
翻译:我们提出更偏爱巴伊西亚假设测试和信任的论据,将其比喻为常犯。我们为推断问题确定了可接受的解决办法,指出巴伊西亚解决办法是可以接受的。我们为推断问题给出了六个较弱的常犯标准,所有这些常犯方法都失败了,但任何可接受方法都满足了这些常犯问题的解决办法。我们注意到,由于巴伊西亚方法为达到I类错误率标准而制造假贝耶斯假冒方法,使巴伊西亚人经常犯而不是贝耶斯人性质。我们举四个例子,表明巴伊西亚人和经常犯方法之间的差异;第一个是无计算问题的可接受办法;第二个是抽象地说明这些常犯方法的错误;第三个是表明在日常统计问题中出现同样的问题,尽管程度较低,但在日常统计问题中出现同样的问题;第四个是说明,某些真实生活中的误判问题,比固定的抽样规模(甚至伪贝耶西亚人)要低得多;四个例子显示贝约的常犯的事后假设检验方法可以超过3000个因素(是300个),而无需事先提供信息。要解决反对这些常犯问题的各方对经常犯方法的错误的问题,而要解决不同的利益问题,一个问题,在以往的常犯常犯的常犯的常犯政策中,但双方的常犯的常犯的常犯的常犯都能够在达成达成达成对一个共同的判断性判断结果的判断结果的结果,“在以前的结果结果的结果,在以前的结果,在以前的结果,我们表示对一个不同的结果的结果,我们没有作出一个不同的判断性判断性判断性判断结果表明,在以前的判断结果显示一个不同的结果。在以前的结果,在以前的结果,我们没有达到一个不同的判断性判断性判断性判断性判断性判断性判断结果显示,我们没有多少。