The enumeration of linear $\lambda$-terms has attracted quite some attention recently, partly due to their link to combinatorial maps. Zeilberger and Giorgetti (2015) gave a recursive bijection between planar linear normal $\lambda$-terms and planar maps, which, when restricted to 2-connected $\lambda$-terms (i.e., without closed sub-terms), leads to bridgeless planar maps. Inspired by this restriction, Zeilberger and Reed (2019) conjectured that 3-connected planar linear normal $\lambda$-terms have the same counting formula as bipartite planar maps. In this article, we settle this conjecture by giving a direct bijection between these two families. Furthermore, using a similar approach, we give a direct bijection between planar linear normal $\lambda$-terms and planar maps, whose restriction to 2-connected $\lambda$-terms leads to loopless planar maps. This bijection seems different from that of Zeilberger and Giorgetti, even after taking the map dual. We also explore enumerative consequences of our bijections.


翻译:- 平面映射与具有连通性条件的平面线性正规$λ$-项之间的双射 翻译后的摘要: 本文介绍了线性λ-项的枚举问题,这个问题近来引起了很多人的注意,部分原因是它们与组合图的联系。Zeilberger和Giorgetti(2015)给出了平面线性正规λ-项和平面地图之间的递归双射,当限制为2-连通的λ-项时(即没有闭合子项时),得到无桥平面图。 受此限制的启发,Zeilberger和Reed(2019)猜测3-连通的平面线性正规λ-项与二分平面图具有相同的计数公式。本文通过直接双射方法解决了这个猜想,给出了这两个族之间的直接双射。此外,利用类似的方法,我们还给出了平面线性正规λ-项和平面地图之间的直接双射,当限制为2-连通λ-项时,得到无环平面图。尽管采取了双重映射,这个双射似乎与Zeilberger和Giorgetti的不同。我们还探讨了双射的枚举后果。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员