A trending paradigm for multiple-choice question answering (MCQA) is using a text-to-text framework. By unifying data in different tasks into a single text-to-text format, it trains a generative encoder-decoder model which is both powerful and universal. However, a side effect of twisting a generation target to fit the classification nature of MCQA is the under-utilization of the decoder and the knowledge that can be decoded. To exploit the generation capability and underlying knowledge of a pre-trained encoder-decoder model, in this paper, we propose a generation-enhanced MCQA model named GenMC. It generates a clue from the question and then leverages the clue to enhance a reader for MCQA. It outperforms text-to-text models on multiple MCQA datasets.
翻译:多选择问题解答(MCQA)的典型模式是使用文本到文本的框架。通过将不同任务的数据统一成单一文本到文本格式,它培训了一个既强大又具有普遍性的基因编码编码解码器模型。然而,扭曲一代人的目标以适应MCQA的分类性质,其副作用是对解码器和可解码知识的利用不足。为了利用经过预先训练的编码器-解码器模型的生成能力和基本知识,我们在本文件中提出了一个代际强化的MCQA模型,名为GenMC。它从问题中产生线索,然后利用这一线索加强MCQA的读者。它超越了多种MCQA数据集的文本到文本模型。