Given a partition of a graph into connected components, the membership oracle asserts whether any two vertices of the graph lie in the same component or not. We prove that for $n\ge k\ge 2$, learning the components of an $n$-vertex hidden graph with $k$ components requires at least $\frac{1}{2}(n-k)(k-1)$ membership queries. This proves the optimality of the $O(nk)$ algorithm proposed by Reyzin and Srivastava (2007) for this problem, improving on the best known information-theoretic bound of $\Omega(n\log k)$ queries. Further, we construct an oracle that can learn the number of components of $G$ in asymptotically fewer queries than learning the full partition, thus answering another question posed by the same authors. Lastly, we introduce a more applicable version of this oracle, and prove asymptotically tight bounds of $\widetilde\Theta(m)$ queries for both learning and verifying an $m$-edge hidden graph $G$ using this oracle.
翻译:如果将图表分割成相连接的组件,会籍代表将声明,图中的任何两个顶点是否位于同一个组件中。我们证明,对于$n\ge k\ge 2$,学习一个含有美元元件的顶点隐藏图形的组件需要至少$\frac{1 ⁇ 2}(n-k(k)-1)2}(n-k)(k)(k)-1)会员询问。这证明了雷津和斯里瓦斯塔娃(2007年)为这一问题提议的O(nk)$算法的最佳性,改进了美元(n\log k)查询中最已知的信息-理论约束。此外,我们建造了一个甲骨牌,能够从非常规角度了解美元隐藏的元件数,而不是学习全部分割,从而解答同一位作者提出的另一个问题。最后,我们引入了一个更适用的这个顶点的版本,并且证明,对于使用这个或轴来学习和核实一个以美元值为美元隐藏的G$G$的顶点查询来说,“ $-m” 。