Gradient Boosted Decision Tree (GBDT) is a widely-used machine learning algorithm that has been shown to achieve state-of-the-art results on many standard data science problems. We are interested in its application to multioutput problems when the output is highly multidimensional. Although there are highly effective GBDT implementations, their scalability to such problems is still unsatisfactory. In this paper, we propose novel methods aiming to accelerate the training process of GBDT in the multioutput scenario. The idea behind these methods lies in the approximate computation of a scoring function used to find the best split of decision trees. These methods are implemented in SketchBoost, which itself is integrated into our easily customizable Python-based GPU implementation of GBDT called Py-Boost. Our numerical study demonstrates that SketchBoost speeds up the training process of GBDT by up to over 40 times while achieving comparable or even better performance.


翻译:渐进推进决策树(GBDT)是一种广泛使用的机器学习算法,已被证明可以在许多标准数据科学问题上取得最先进的结果。 当输出具有高度多面性时,我们有兴趣将其应用于多输出问题。 虽然GBDT的落实非常有效,但对于这些问题的可伸缩性仍然不尽人意。在本文中,我们提出了旨在加速多输出情景中GBDT培训进程的新方法。这些方法背后的想法在于对用于找到最佳决策树的评分函数进行大致的计算。这些方法在StcherBoost中实施,而StchBoost本身就被纳入我们易于定制的称为Py-Boost的GBDTPython GPU执行中。我们的数字研究表明,StrachBoost在取得可比较或更好的业绩的同时,将GBDT培训进程加速40多次。

0
下载
关闭预览

相关内容

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力较强的算法。
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
专知会员服务
162+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月25日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员