Presently, the practice of distributed computing is such that problems exist in a mathematical realm different from their solutions. Here, we present a novel mathematical realm, termed multiagent transition systems, that aims to accommodate both distributed computing problems and their solutions. A problem is presented as a specification -- a multiagent transition system -- and a solution as an implementation of the specification by another, lower-level multiagent transition systems. This duality of roles of a multiagent transition system can be exploited all the way from a high-level distributed computing problem description down to an agreed-upon base layer, say TCP/IP, resulting in a mathematical protocol stack where each protocol is implemented by the one below it. Correct implementations are compositional and thus provide also an implementation of a protocol stack as a whole. The framework also offers a formal, yet natural, notion of faults and their resilience. Several applications of this mathematical framework are underway. As an illustration of the power of the approach, we provide multiagent transition systems specifying a centralized single-chain protocol and a distributed longest-chain protocol, show that the single-chain protocol is universal in that it can implement any centralized multiagent transition system, show an implementation of this protocol by the longest-chain protocol, and conclude -- via the compositionality of correct implementations -- that the distributed longest-chain protocol is universal for centralized multiagent transition systems.
翻译:目前,分布式计算的做法是,在不同于其解决办法的数学领域存在问题。在这里,我们提出了一个新的数学领域,称为多试剂过渡系统,旨在兼顾分布式计算问题及其解决办法。一个问题被作为一个规格 -- -- 多试剂过渡系统 -- -- 和作为另一个较低层次的多试剂过渡系统执行规格的一种解决办法提出。多试剂过渡系统的双重作用可以从一个高层次分布式计算问题描述到一个商定的基层,例如TCP/IP, 导致一个数学协议堆,每个协议都由下面的一个协议堆执行。正确的执行是构成性的,因此也提供了整个协议堆的执行。这个框架还提供了一个正式但自然的缺陷概念及其弹性。这个数学框架的一些应用正在进行中。为了说明这一方法的力量,我们提供多试剂过渡系统,具体规定一个集中的单一链协议和一个分布最久的链协议,表明单链协议是普遍性的,它可以执行任何集中的多试剂过渡系统,从而可以执行整个协议堆。框架还提供了一个正式的但自然的缺陷及其弹性概念。这个框架还提供了一个正式的,通过最长时间的供应链执行这一协议。