The need for training data can impede the adoption of novel imaging modalities for learning-based medical image analysis. Domain adaptation methods partially mitigate this problem by translating training data from a related source domain to a novel target domain, but typically assume that a one-to-one translation is possible. Our work addresses the challenge of adapting to a more informative target domain where multiple target samples can emerge from a single source sample. In particular we consider translating from mp-MRI to VERDICT, a richer MRI modality involving an optimized acquisition protocol for cancer characterization. We explicitly account for the inherent uncertainty of this mapping and exploit it to generate multiple outputs conditioned on a single input. Our results show that this allows us to extract systematically better image representations for the target domain, when used in tandem with both simple, CycleGAN-based baselines, as well as more powerful approaches that integrate discriminative segmentation losses and/or residual adapters. When compared to its deterministic counterparts, our approach yields substantial improvements across a broad range of dataset sizes, increasingly strong baselines, and evaluation measures.
翻译:培训数据的必要性可能妨碍采用以学习为基础的医学图像分析的新成像模式。 域适应方法通过将培训数据从相关源域转化为新的目标领域,部分缓解了这一问题,但通常假设有可能一对一翻译。我们的工作涉及适应一个更信息的目标领域的挑战,在这个领域,多个目标样本可以从单一来源样本中产生。我们尤其考虑从mp-MRI转换为VERDICT,这是一个较富的MRIF模式,涉及癌症定性的最优化获取协议。我们明确说明了这一绘图的内在不确定性,并利用它产生以单一投入为条件的多重产出。我们的结果显示,这使我们能够系统地为目标领域提取更好的图像,同时使用简单的循环GAN基线,以及更强大的方法,将歧视分解损失和/或残余适应者结合起来。与其确定性对应方相比,我们的方法在一系列广泛的数据集大小、日益强大的基线和评估措施方面都取得了显著的改进。