In this work, we propose an energy efficient neuromorphic receiver to replace multiple signal-processing blocks at the receiver by a Spiking Neural Network (SNN) based module, called SpikingRx. We propose a deep convolutional SNN with spike-element-wise ResNet layers which takes a whole OFDM grid compliant with 5G specifications and provides soft outputs for decoded bits that can be used as log-likelihood ratios. We propose to employ the surrogate gradient descent method for training the SpikingRx and focus on its generalizability and robustness to quantization. Moreover, the interpretability of the proposed SpikingRx is studied by a comprehensive ablation study. Our extensive numerical simulations show that SpikingRx is capable of achieving significant block error rate performance gain compared to conventional 5G receivers and similar performance compared to its traditional NN-based counterparts with approximately 9x less energy consumption.
翻译:暂无翻译