Applying the triplicate form of the extended Gould--Hsu inverse series relations to Dougall's summation theorem for the well--poised $_7F_6$-series, we establish, from the dual series, several interesting Ramanujan--like infinite series expressions for $\pi^2$ and $\pi^{\pm1}$ with convergence rate "$-\frac{1}{27}$".
翻译:将延长的Gould-Hsu反向序列关系的三重形式适用于Dougall 精美的$7F_6美元系列的总和理论,我们从两套系列中确定几个有趣的拉曼努亚(Ramanujan)类似无限系列的表达方式,即$2美元和$\píp ⁇ p1}美元,其汇合率为“$-\frac{1 ⁇ 27}$”。