In this paper, we initiate a study of asymmetric all-or-nothing transforms (or asymmetric AONTs). A (symmetric) $t$-all-or-nothing transform is a bijective mapping defined on the set of $s$-tuples over a specified finite alphabet. It is required that knowledge of all but $t$ outputs leaves any $t$ inputs completely undetermined. There have been numerous papers developing the theory of AONTs as well as presenting various applications of AONTs in cryptography and information security. In this paper, we replace the parameter $t$ by two parameters $t_o$ and $t_i$, where $t_i \leq t_o$. The requirement is that knowledge of all but $t_o$ outputs leaves any $t_i$ inputs completely undetermined. When $t_i < t_o$, we refer to the AONT as asymmetric. We give several constructions and bounds for various classes of asymmetric AONTs, especially those with $t_i = 1$ or $t_i = 2$. We pay particular attention to linear transforms, where the alphabet is a finite field $\mathbb{F}_q$ and the mapping is linear.
翻译:在本文中,我们开始研究非对称全无变换(或非对称 AONTs ) 。 一个(对称) $tt-t-t-n-not 变换(对称) $t-t-t-not) 是一个双向映射图,它的定义是在特定限定字母的美元图上定义的。 要求除美元外所有产出的知识使任何美元输入完全无法确定。 已经有许多文件开发了 AONT 理论,并展示了AONTs在加密和信息安全方面的各种应用。 在本文中,我们用两个参数来取代参数$t- o美元和$t_ i 。 其中, 美元= 美元= leq t_ o$。 要求除美元外所有产出的知识使任何美元输入完全无法确定。 当 $t_ i < t_o$, 我们称之为AONT 不对称。 我们给各种AONTs 类AONTs(特别是以$_i= 1美元或$t_ linealimalma) roduction a rodudealtialal = 2, listal dald.