We present an elementary mathematical method to find the minimax estimator of the Bernoulli proportion $\theta$ under the squared error loss when $\theta$ belongs to the restricted parameter space of the form $\Omega = [0, \eta]$ for some pre-specified constant $0 \leq \eta \leq 1$. This problem is inspired from the problem of estimating the rate of positive COVID-19 tests. The presented results and applications would be useful materials for both instructors and students when teaching point estimation in statistical or machine learning courses.
翻译:我们提出一个基本的数学方法,在折方差错损失下寻找伯努利比例的最小估计数字$\theta$,当美元属于表格$\Omega = [0,\eta]$的限定参数空间时,用于某些预先指定的常数$0\leq\eta\leq 1$。这个问题源于估算正COVID-19测试率的问题。在统计学或机器学习课程的教学点估算时,所提出的结果和应用对于教员和学生都是有用的材料。