Self-supervised clustering methods have achieved increasing accuracy in recent years but do not yet perform as well as supervised classification methods. This contrasts with the situation for feature learning, where self-supervised features have recently surpassed the performance of supervised features on several important tasks. We hypothesize that the performance gap is due to the difficulty of specifying, without supervision, which features correspond to class differences that are semantic to humans. To reduce the performance gap, we introduce the "single-noun" prior - which states that semantic clusters tend to correspond to concepts that humans label by a single-noun. By utilizing a pre-trained network that maps images and sentences into a common space, we impose this prior obtaining a constrained optimization task. We show that our formulation is a special case of the facility location problem, and introduce a simple-yet-effective approach for solving this optimization task at scale. We test our approach on several commonly reported image clustering datasets and obtain significant accuracy gains over the best existing approaches.


翻译:近年来,自我监督的集群方法已经达到更高的准确性,但还没有达到监督的分类方法。这与特征学习的情况不同,特征学习的情况是,自我监督的特征最近超过了若干重要任务的监督特征。我们假设,绩效差距是由于难以在没有监督的情况下具体说明哪些特征与对人类而言具有语义性的等级差异相对应。为了缩小性能差距,我们引入了“单词”之前的“单词”方法,指出语义集群往往与人类用单词标注的概念相对应。通过使用预先训练的网络将图像和句子映射到一个共同空间,我们在获得限制优化的任务之前就强制实施这一功能。我们表明,我们的配方是设施定位问题的一个特殊案例,并采用简单而有效的方法大规模地解决这一优化任务。我们用一些通常报告的图像组合数据集测试我们的方法,并在现有最佳方法上取得显著的准确性收益。

1
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
7+阅读 · 2020年8月7日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
7+阅读 · 2018年11月27日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员